Language as a Cognitive Process

Volume I: Syntax

Terry Winograd
Stanford University

vy
Addison-Wesley Publishing Company

Reading, Massachusetts - Menlo Park, California - London
Amsterdam - Don Mills, Ontario - Sydney

Chapter 2

Word Patterns and
Word Classes

Syntax is the part of linguistics that deals with how the words of a language
are arranged into phrases and sentences and how components (like prefixes and
suffixes) are combined to make words. In theory, it would not be necessary
for languages to have a systematic syntax. We could imagine, for example,
a language that was simply a list of all the things that could be said. The
linguist’s work would censist of compiling giant dictionaries of all the possible
phrases with the meaning of each. In fact, there are finite languages for which
such a dictionary exists, such as those of military and diplomatic code books.
Even in ordinary conversation, many of our utterances are copied whole from
a stock of phrases and cliches, including social formulas, such as How do you
do?, and expressions, such as The more the merrier and It takes one to know
one.

Human language taken as a whole, though, is infinite. We can produce sen-
tences that we have never heard or spoken before, and they can be understood
by others for whom they are totally new. At the other extreme from a finite
language we could imagine a completely free language in which any sequence
of words that had a possible interpretation was in the language. The sentence
Language interesting 1s would be just as reasonable as Language is interesting,
since it would have a clear interpretation. But no human language is syntax-
free. Our freedom to create novel utterances operates within a framework of
grammar, which puts strong constraints on the patterns that are used in the
language.

35

36 WORD PATTERNS

Chapters 2 through 6 present a view of the knowledge needed by a language
user to interpret and produce syntactic structures, and some mechanisms are
given by which the processing can be accomplished. In this chapter, we will
look at some simple kinds of linguistic patterns and introduce some of the
computational mechanisms that will be used throughout the book. Section 2.1
describes the idea of patterns and pattern matching in an elementary form
and introduces the notation for describing objects and procedures. Section
2.2 describes the classification of words and its use in matching. Section 2.3
describes a more complex kind of pattern represented in a transition network,
and Section 2.4 gives some procedures for recognizing sentences of a language
using such networks.

2.1 Patterns and matching

The notion of pattern at its simplest is that of a physical object whose form
is identical to the form of a piece of material to be cut. It can be used to
determine the shape of an infinite variety of garments, differing in material,
color, and texture. A comparable idea of linguistic patterns can be used to
describe the possible forms of a language. Individual sentences such as Traveling
13 a pleasure can be viewed as being ‘cut out’ on the basis of more general forms
that have blanks in place of specific words, such as ‘. s a ...

Some of the early computer programs that interacted with people in English
used these simple patterns. Figure 2-1 lists the entire set of patterns used by
SIR (Raphael, 1967). Of course, it was clear that this was an extremely limited
part of English, and the importance of the program lay not in its handling of

s s .7

— has . How many . does __ have?
. OWDNS . How many . does __ own?
Where is .__.? What is the . of __?

Is _ part of __? How many . are parts of _.?
Does . own .__? How many . are there on __?
_is.__ partof . — has as a part one __.
There are . on .. There is one __ on __.

__ is just to the left of .
Is _ just to the left of _.?

__ is to the left of .
Is _ to the left of __?
_ is to the right of .
Is __ to the right of __?

— is just to the right of _.
Is _ just to the right of _?

Figure 2-1. Patterns recognized by SIR.

2.1 PATTERNS AND MATCHING 37

Search for a match in a set of patterns

Purpose: Test whether a sequence of words matches any pattern

Inputs: a sequence of words and a set of patterns 2-3
Basic Method: For each pattern in the set:

If the pattern matches the sequence of words, succeed. 2-3
Conditions:

If every element of the set is tested without a match, fail.

Figure 2-2. Search for a match in a set of patterns.

syntax, but in the reasoning mechanisms it used to answer questions (which
will be described in the volume on meaning).

The knowledge of syntax represented in such a program consists of a set
of alternative sentence patterns, each specifying a particular sequence of words
and places for words. A sequence of words is a sentence of the language if
there is some pattern in the set which matches it. The patterns are used
independently—a single pattern matches a whole sentence. In later chapters we
will see more complex uses of patterns in which a sentence is described in terms
of several patterns applying jointly. For the simple mechanisms of this chapter,
we will deal only with sentences that can be matched by a single pattern.

A pattern matching procedure

As an introduction to the notation used for describing procedures and knowledge
structures in this book, we will explain the definition of a simple pattern
matcher in detail. The mechanism used here may seem overly complex for
the structures being described, since it is being introduced in a very simple case
to make clear just what the notations mean and how they are used.

Figure 2-2 describes how a set of patterns like those in Figure 2-1 could be
used in a recognition procedure. The procedure goes through the patterns one
at a time, stopping as soon as it finds one that fits. The input to the procedure
is a word sequence, and successful recognition of the sequence means that it is
a sentence of the language characterized by the set of patterns. We have not
described here just what a ‘word’ is, but the definition will be discussed later
in the chapter. In a full language understander, the input would be a sequence
of sounds or written characters, and some other part of the language analysis
process would divide it into words.

The definition is written in DL, a notation developed for this book and
explained in Appendix A. Each definition describes a procedure (as this one
does), a class of objects (as in the definition of ‘pattern’ in Figure 2-3), or a
predicate used in logical expressions. The numbers to the right of the box are the
figure numbers of definitions for classes of objects, procedures, and predicates

38 WORD PATTERNS

that are used in this definition. In each case, the term being cross-referenced
appears in italics somewhere in the line next to which the number appears. A
cross-reference is given only for the first appearance of a term in a particular
figure, and will not be given for terms related to standard entities (such as
words, characters, and sequences), which are used throughout the book and
defined in Section A'4.

Several features of the definition deserve note:

Undefined objects, steps, and expressions. In describing this basic match-
ing procedure, we have not said just what a pattern is or what it means for a
pattern to match a word sequence. Any one of a number of different definitions
for pattern could be ‘plugged in’ and the procedure would work in the same
way. A general feature of descriptions in DL (and programming languages in
general) is that we can write definitions that make use of objects, predicates, or
procedures that are defined independently. If we look at this definition alone,
it gives us an outline of what is to be done, but it is not detailed enough to
actually carry it out. '

The ultimate goal in designing a procedure is to make it complete and
precise enough to be carried out by an interpreter, either a person or a program,
which has the basic ability to carry out a collection of primitive steps. Appendix
A describes the primitives of the DL interpreter. They include primitive objects
such as sets and characters, primitive procedures such as stepping through a
sequence, and primitive predicates such as equality. A procedure definition is
a fully defined algorithm if each step, object, or expression is either a primitive
of the language or refers to a definition that in turn is fully defined. We will
discuss later what it takes for an object or predicate to be fully defined. Careful
readers will note that this description of what it means for a procedure to be
fully defined does not deal with recursive definitions—those that include a step
making use of the definition in which it appears. For the moment, no such
problems arise. See Section A.3 for a more comprehensive discussion.

Unspecified order. In saying ‘For each pattern in the set...’ we have not

specified in what order to take them. For our purposes in this definition it does
not make any difference, as long as they are taken one by one until a match
succeeds or they have all been tried. One of the features of DL is that we
can avoid being specific about ordering when it is irrelevant. A definition that
includes a series of steps with an unspecified order is considered a fully defined
algorithm, since any interpreter that actually carried out these instructions
could choose some order arbitrarily. Of course, there are times when we want
to be more specific. For example, the pattern set might contain two patterns
that could apply to the same sequence of words, such as ‘X’ and ‘_.Y’, which
both apply to ‘X Y’. The procedure as we have described it would find one or
the other but does not determine which. If the procedure used an ordered
sequence of patterns instead of a set, we could determine which one would be
found by the order in which they appeared.

21 PATTERNS AND MATCHING 39

Describes: a pattern to match a sequence of words

Kinds of Pattern: Simple, Vartable 2-42-6

Basic Structure: a sequence, the class of each member depending
on the kind of pattern

Predicates:

ZRM=~ =

A pattern matches a sequence of words
Depends on the kind of pattern

Figure 2-3. Pattern.

Success and failure. The description of what to do for each pattern indicates
that if it matches, the search will succeed. Once a successful pattern is found,
no more are tried, even though the instruction says ‘For each pattern. ...
Similarly, at the end, if nothing has been found the procedure fails. A procedure
can include any number of steps that call for it to ‘Succeed’ or ‘Fail.” Whenever
such a step is reached in following the procedure, it has two consequences— the
immediate stopping of the procedure and the determination of its outcome as
success or failure.

Results. In many procedure descriptions, we want to describe some results that
are produced. In Figure 2-2 we have not—the only result is that the search
procedure succeeds or fails. It is an example of a program for recognition rather
than for parsing or understanding. In most real applications, we are not
interested in simply recognizing the fact that a sequence of words is a sentence
of a language. We want to determine its structure and use it in some other
procedure, such as question answering. A parsing procedure has as its result
a structure describing the organization of the sequence of words as a sentence,
while an understanding procedure produces an interpretation based on some
notion of meaning. In most of this volume, we will be dealing with parsing—
producing structures that are not interpreted for meaning, but which show
the internal organization of the sentence. However, it is often useful to explain
parsing procedures by first explaining the corresponding recognition procedures
and then adding the additional detail needed to produce a structure.

A formal definition of patterns

Figure 2-3 gives a formal definition of patterns that begins to fill in some of the
detail missing from Figure 2-2. It is still quite general, describing what is com-
mon to all patterns and indicating two specific kinds—simple patterns, in which

40 WORD PATTERNS

the elements are matched independently, and variable patterns, in which vari-
ables are used to keep track of what was matched for each element (explained

below).
This definition illustrates three additional features of the notation:

Classes and kinds. The definition describes objects of the class ‘Pattern.’
Class definitions are indicated by a label running down the left side. Figure
2-3 indicates that there are two specific kinds (or subclasses) of patterns, each
having its own definition (as indicated by the cross-reference numbers on the
right). Those properties common to all kinds of patterns are included in this
definition, while those specific to one kind appear in its definition.

Basic structure. Each pattern is in turn made up of a sequence of pattern

elements. Not every kind of object has such a simple structure. For example,

in Chapter 3 we will define a ‘phrase structure node’ as having ‘roles’ consisting
of a ‘label,’” a ‘parent,’ and a set of ‘children.” In the case of simple structures
like the one defined in Figure 2-3, it is sufficient to indicate that it is a set or
sequence and to say what class the elements belong to.

Predicates. A definition of a predicate such as ‘A pattern matches a word
sequence’ is different from a procedure definition in that it describes the logical
conditions for something to be true rather than a procedure to be carried out.
There are primitive predicates in the language, such as equality of two objects
and membership of an object in a set. These can be combined using logical
operators such as ‘not,” ‘and,’ and ‘or.” It is also possible to define a predicate
by giving the definition of a procedure that tests whether it is true or not, as is
done in Figure 2-4. A predicate is fully defined if: it is primitive; or there is a
fully defined algorithm for testing it; or it is defined as a combination of logical
operators and fully defined predicates. Predicate definitions are indicated by
underlining the phrase for the predicate. In Figure 2-4 we do not actually give
the definition, leaving it to be defined for each kind of pattern. However, it is
included here inside the definition of pattern to indicate that for every kind of
pattern such a predicate must be provided.

Figure 2-4 gives yet more detail, providing a procedure by which we can test
whether a pattern matches a sequence of words. This procedure is the obvious
one of running through the pattern and sequence in paralle] (a primitive pro-
cedure of the DL interpreter), checking to see if the elements match. However,
the question of what it means for an element to match is once again left open
to allow for different kinds of elements in patterns. Other things to note are:

Class hierarchy. A simple pattern is a kind of pattern, and in turn there are
three kinds of simple patterns. We can describe a hierarchy of this sort to any
depth. Anything appearing in a definition applies to all of the subclasses to any
depth. A literal simple pattern is a kind of simple pattern and is therefore also
a kind of pattern. Everything appearing in the definition of pattern (Figure
2-3) applies to it as well.

21 l PATTERNS AND MATCHING 41

Describes: a pattern that matches a sequence of words with each
element, independent of the others '

A Kind of: Pattern 2-3
Kinds of Simple Pattern: Literal, Open, Lerical 2-52-9

Basic Structure: a sequence, the class of each member depending
on the kind of pattern

Procedures:

Test whether a pattern matches a sequence of words

P Inputs: a pattern and a sequence of words
A | Basic Method: Step through the pattern and the sequence of

1: words in parallel doing:
:: 8 1f the element of the pattern matches the word, then go on. Other- §
- wise fail.

N Conditions:
8 If either sequence runs out before the other, fail.
- If both sequences run out simultaneously, succeed.

Predicates:

An element of a pattern matches a word
Depends on the kind of pattern

Figure 2-4. Simple pattern.

Nested definitions. The box containing the definition of simple pattern

" has within it a box defining the procedure ‘Test whether a pattern matches

a sequence of words.” This could have appeared in a separate figure, since it
is a full definition. However, by including it inside the definition of this kind
of pattern, we indicate that it constitutes a basic part of our understanding
of what a simple pattern is. Without some notion of what it means to match
a pattern, its definition as a sequence of elements would be uninteresting. In
carrying out the procedure defined in Figure 2-2, the interpreter needs to use
the appropriate definition of matching for the particular kind of pattern. In
general, we will include definitions inside other definitions to indicate this kind
of relevance. The character ‘§’ is used in place of a cross-reference number when
the definition being referred to appears in the same figure.

Procedures for testing predicates. The procedure defined within Figure
2-4 is the means of testing whether a pattern matches. It corresponds to the
predicate that was mentioned in F igure 2-3. If the procedure succeeds for
a given pattern and sequence, then it is true that the pattern matches the
sequence. If it fails, the corresponding expression is false.

42 WORD PATTERNS

Describes: a pattern with every element specified
A Kind of: Simple pattern 2-4
Basic Structure: a sequence of words

Predicates:

™~ 2 XM e =
Z XM=l = 3>

An element of a pattern matches a word
if it is equal to the word.

Describes: A pattern including a ‘wildeard’ that matches anything

A Kind of: Simple pattern 24
Basic Structure: a sequence, each member of which is either a
word or the character ‘_’
The choice of ‘. 1s arbitrary. All that matters is that there be a
recognizable symbol that is allowed to match any word.

Zm=wQ

Predicates:

An element of a pattern matches a word
if it is equal to the word or is the character ‘_.".

ZRM =D

Figure 2-5. Two kinds of simple patterns.

Conditions. The procedure for matching a pattern includes conditions in-
dicating what is to happen when the sequences run out. One feature of DL that
is different from many programming languages is the ability to separate out spe-
cial conditions like these from the description of the basic method. Whenever
a condition is true of the current state of things, whatever it says to do is done,
which may involve the success or failure of the procedure as a whole. The
details of what can be included in such conditions are given in Section A.4.
Figure 2-5 defines two kinds of patterns, a literal pattern (a sequence to be
matched exactly) and an open pattern of the kind shown for SIR in Figure 2-1.
It fills in more details that were left open by the definition of simple patterns
in Figure 2-4, specifying what the pattern elements are and what it means for
an element to match a word. Comments appearing in italics are not part of
the formal definition but are included as explanation. With this definition, we
have a fully defined algorithm for searching for a match in a set of literal or
open patterns, since all of the objects, steps, and expressions for which we have
not given definitions are primitive. Note that the predicate ‘An element of a
pattern matches a word’ is defined not by giving a test procedure, but by a
logical expression built up out of primitive tests for equality and the logical

3 >

Or.

2.1 PATTERNS AND MATCHING 43

Describes: a pattern whose elements are words and variables

A Kind of: Pattern 2-3
Basic Structure: a sequence, each mnember of which is either a
word or an integer
Integers indicate the variables. If the same integer appears more than
once, it must match the same word in all occurrences.

Procedures:

Match a variable pattern against a sequence of words

Purpose: Produce a table associating variables with words in
the sequence

mrE>=0b <

Inputs: a pattern and a sequence of words
Working Structures:
Bindings: a table whose keys are integers and whose entries
are words; initially empty
Results: The table of bindings when the match is done

Basic Method: Step through the pattern and the sequence of
words in parallel doing;:
If the pattern element is:
® a3 word, then:
oIf it is the same as the corresponding word in the se-
quence go on. Otherwise the match fails.
®an integer, then:
uIf there is an entry for that integer in the bindings, then:
*If the word in the sequence is equal to the entry, go
on. Otherwise the match fails.
aIf there is no entry, add the word as an entry in the
table with the integer as the key and go on.

r& LETP L]

Conditions:
If either sequence runs out before the other, the match fails.
If both sequences run out simultaneously then return the
bindings.

Figure 2-6. Variable pattern.

Patterns with variables

The matching procedure of Figure 2-2 applied to simple patterns as defined in
Figure 2--4 wouid not be very usetul for a real language analyzer. Once it has
finished its work, all we know is whether it succeeded or failed. There is no
trace left of what words were matched against the pattern elements, or even of
which pattern the whole sequence matched.

In order to perform a task like question answering, the input analyzer must
not only see that the input is a real sentence, but it must also gather information

44 WORD PATTERNS

Pattern | Word Bindings Word Bindings

I
1 ’ row 1=row l please 1=please
2 I row l=row, 2=row | turmn 1=please, 2=turn
2 | row 1=row, 2=row | n FAIL
your (ybur 1=row, 2=row l your
3 I| boat t=row, 2=row, 3=boat l ezam

Figure 2-7. Matching a pattern with variables.

on what was in it. The simplest mechanism for gathering information is to let
the blanks be associated with variables, and to keep a pairing of these variables
with the words that they matched. SIR in fact used variables of this kind.
Figure 2-6 defines a pattern with variables and its use in a2 more complex
matching procedure. To distinguish variables from English words in patterns,
we use integers. Figure 2-7 illustrates the sequence of steps in matching the
pattern ‘1 2 2 your 3’ against the sequences row row row your boat and please
turn in your exam. '
The definition of Figure 2-6 introduces a number of other features of DL:

Results. The table produced in the process of matching is returned as a result
of the procedure. A procedure can have any number of results, which can be
any kinds of objects. Part of the definition is a statement of what kind of
things the results will be. If the procedure fails, no results are returned. A step
calling for a ‘Return’ causes an immediate stopping of the procedure, just like
a ‘Succeed’ or ‘Fail.’

‘Working structures. During the process of matching, the procedure makes
use of a table (one of the primitive objects of DL) to keep track of what word
has matched what variable. This is an example of a working structure. In this
case, it is returned as a result, but a procedure can define and make use of any
number of additional structures that are not returned.

Complex conditionals. The nesting of ‘If...then... statements illustrates
how one logical expression can be used as part of another. The alignment of the
lines in an outline form, along with the little boxes, is DL’s way of indicating
just how they are structured. Appendix A gives more details both on logical
expressions and on the use of outline form.

21 I PATTERNS AND MATCHING 45

Generate a sentence from a pattern and bindings

Purpose: Produce a sentence using the result of a match t6 fill in the
blanks of an output pattern
Inputs: a variable pattern and a table whose keys are integers and entries | 2-6
are words
Working Structures:
Response: a sequence of words, initially empty
Results: the completed response
Basic Method:
® Step through elements of the pattern, doing:
If the pattern element is:
=a word, then add it to the end of the response.
man integer, then:
If there is an entry for it in the table, add the entry to the
end of the response. Otherwise fail.
® Return the response.

Figure 2-8. Generate a sentence.

Patterns and generation

In addition to the procedure for recognizing sentences, we can also use pat-
terns and bindings to generate sentences. An early computer program called
ELIZA carried on a dialog in which the program simulated a nondirective
psychiatrist talking to a patient. To produce the dialog, the program repeatedly
read an input sequence, matched it, and then generated and printed a reply
using pairs of patterns such as:

My 1 is 2 — How long has your 1 been 2 ?
1 thinks I am 2 — Do you think you are 2 ?

If the person typed My luck is down, the program would respond How long has
your luck been down? Given Everyone thinks I am crazy, it would reply Do you
think you are crazy? The program produced quite convincing dialogs using this
simple mechanism, as illustrated by the following dialog (from Weizenbaum,
1966). The computer’s responses are in italics:

Men are all alike.
In what way?
They're always bugging me about something or other.
Can you think of a specific ezample?
Well, my boyfriend made me come here.
Your boyfriend made you come here?
He says I'm depressed much of the time.
I am sorry to hear you are depressed.

46 WORD PATTERNS

Of course, ELIZA also produced blunders, since it had no analysis of
meaning beyond the recognition of simple patterns, and for many inputs it had
no matching patterns and responded with phrases-like Tell me more and Please
go on. We could obtain a simplified version of the program by changing our
overall search procedure (Figure 2-2) to use a set of pairs, each consisting of
a recognition pattern and a generation pattern. Responses would be generated
using the procedure of Figure 2-8 on the preceding page. In the actual ELIZA
program, variables could be matched against sequences of words, rather than
just against single words. This further complexity is given as an exercise.

2.2 Word classes

The first thing to do in building a better pattern recognizer is to make it more
selective. The pattern I.__ to _ matches many real sentences such as I want
to go, but it also matches I elephant to the, which is not a sentence. A person’s
knowledge of a language includes a more precise notion of what words can fill
in the blanks.

Much of what is taught in elementary school grammar is the identification
of lexical categories, often called word classes or parts of speech. Students
learn to assign words to categories like noun, verb, and adjective, based on
their intuitions about language structure. With these classes the sentences Fat
giraffes munch leaves and Brainy rabbits nibble carrots can both be described
by the single pattern ‘ADJECTIVE NOUN VERB NOUN.’

L

E | Describes: a pattern whose elements specify lexical categories, as

X well as specific words to match

(l: A Kind of: Simple pattern 2-4

A | Background: a dictionary 2-10

L | Basic Structure: a sequence, each member of which is either a
word, a lezical category, or the character “__’ 2-10

P | Predicates:

A

T An element of a pattern matches a word If the element is:

T mthe character ‘_, or

E ® the word, or

R ® 3 lezical category to which the word belongs. 2-10

N

Figure 2 9. Lexical pattern.

2.2 WORD CLASSES 47

Figure 2-9 defines a lexical pattern as one whose elements can specify lexical
categories, and gives a definition of matching that assumes the language user
has a simple dictionary (defined in Figure 2-10) listing the classes to which
each word belongs. This is indicated as part of the ‘background’ rather than
as an input to the matching procedure, since structures like dictionaries and
grammars tend to serve as a fairly permanent common body of knowledge used
by many procedures. This is not a firm distinction—the choice of whether
to consider something as an input or a background depends on how we are
thinking of the structure of the overall system of definitions.

The dictionary

By putting the definition of lexical category inside a definition of dictionary,
we indicate that it makes sense for a word to be in a category only with respect
to some dictionary—different dictionaries may have different sets of categories
that do not correspond to each other in a simple way. A number of problems
are ignored in this simplified notion of a dictionary. For example, we do not
deal with the relationships between words like gopher and gophers or go and
going. However, for many computer applications a dictionary not much more
complex than this one is sufficient.

One extension to this simple dictionary would be to use word endings to
identify the class to which a word belongs. For example, a word ending with
-ly is likely to be an adverb, while one ending with -ing is probably going to be

Describes: a table associating word classes with individual words
Basic Structure: a table: each key is a word and each entry is a
set, of lezical categories §
We need to provide for the fact that many words are in more than one
category.

Classes:

Describes: a word class
Predicates:

<XRPZO~=IO~7

A word belongs to a lexical category if there is a pair
in the dictionary with the word as the key and the
category a member of the entry.

Background: a dictionary

> —mr
<BOOM—A>M

Instances: Noun, Verb, Adjective, Preposition,. . .

Figure 2-10. Dictionary.

48 WORD PATTERNS

a verb. If there is an analysis program that can use knowledge about standard
suffixes, then the dictionary does not need to contain thinking in addition to
the verb think. .

Some programs reduce the dictionary even further, including in it only
the stems of a few hundred very common words. They derive the rest of the
categories by guessing, with a high degree of accuracy. Since these programs
do not expect to find a stem for every word, they make mistakes with words
like anomaly and thing, whose endings belie their real class. The practicality of
such an approach depends on whether occasional mislabeling of a word prevents
the rest of the system from handling a sentence. If a system can make flexible
use of multiple knowledge sources, it is even possible to guess the class of an
unknown word on the basis of analyzing the rest of the sentence. Human
language users gain much of their vocabulary this way, as illustrated by our
ability to understand (in some sense) sentences like Twas brillig and the slithy
tove. ..)

In most of our discussion of syntax, we will assume that there is a procedure
that operates on the initial input (a typed sequence of characters), using some
kind of simple dictionary and pre-processor to determine a sequence of words
and assign each word to a set of word classes. However, before going on we will
describe some of the problems presented by the facts of natural language.

What is a word?

The first impression of a literate language user is that the notion of word is basic
and simple. A word is whatever appears between blanks and punctuation marks
on a page. Even in spoken language, it seems quite reasonable to attempt to say
something ‘one word at a time.” As with many features of language, though,
a simple definition works for a great majority of the items in the language but
also leaves many unsolved problems.

Structural linguists emphasized the need to provide clear formal definitions
of the components of linguistic utterances, and in doing this found the need
to talk about a unit called a morpheme, which corresponded in some but not
all ways to our common sense notion of a word. The morpheme is defined to
be the basic unit of meaning, and several morphemes can be combined in a
single word. New problems come up in trying to formalize the idea of ‘unit
of meaning,’ but to a large extent we can get agreement on the presence of
morphemes, The word computerization is made up of compute, -er, -ize, and
_ation. In German, the phrase life insurance company employee is expressed as
the single multi-morpheme word Lebensversicherungsgesellschaftsangestellter.
Some languages (called agglutinating languages) build up complex words to
convey some of the same information that we express with syntactic structures
in English. In Turkish, for example, much of the verb and preposition structure
is ‘glued together.” Kullanilamiyacak means it will not be able to be used, and
cocuklarinizdan means from your children.

2.2 WORD CLASSES 49

In view of phenomena like these, it is clear that our notion of what con-
stitutes a single word cannot depend on our intuitions about how much separate
meaning each word should convey. It is also not reliable to depend on the way
things are spelled or pronounced. Even in English, which compared to many
languages has a clear separation of words, there are examples that cause prob-
lems for analysis. The phrases can not, cannot, and can’t share a common
meaning. Cen not is clearly two words, but the others are less certain. The
term contraction is used for a class of problematic structures such as we’ve,
wouldn’t, and she’ll, which behave very much like single words although they
are derived from pairs of words.

The native speaker’s intuition of what constitutes a word seems to be most
closely captured by some scale that combines external mobility with internal
stability. If a combination of morphemes can be shifted together to different
places in a sentence, it is more wordlike than one with a fixed position. If it
is possible to insert an item between two morphemes, they are not parts of a
single word. Haven’t is more wordlike than have not, since we can say things
like have usually not, but not have usually n't.

Within the paradigm of structural linguistics, many scholarly papers dealt
with these problems and pointed out the failings of all the simple criteria that
had been proposed for separating words. This was one of the dissatisfactions
that led to moving away from the structural paradigm. In this book, we give
rather little attention to the problems of morphology, as the study of morphemes
is called. This does not imply that these problems are irrelevant to theories of
how people understand and produce language. It is rather an indication that
little exploration has been done of how the computational paradigm can add
new insights to the large body of knowledge accumulated by the structuralists.

The classification of words

Anyone with a traditional grammar education from high school comes to lin-
guistics with a seriously limited view of word classes. The impression conveyed
in most English courses is that there is a well-defined set of parts of speech and
that every English word can be straightforwardly assigned to one or more of
them. This is true in an artificial language (for example, a computer language),
where we can invent arbitrary categories, but in natural languages the grouping
of words into classes is highly dependent on the purposes of classification.

Common sense ways of classifying words operate along several dimensions
that are partially independent. One set of classes is based on meaning, as in
the traditional definition, ‘a noun names a person, place, thing, or concept.” A
second set of criteria is based on the kinds of endings words will take. We can
expect, for example, that any word that will accept -ing as a suffix is a verb.
Another method of classification is based on the set of patterns in which a word
can appear. A word that will fit into It was a very __. year is an adjective.

50 WORD PATTERNS

Category Frame

Noun Tsawa .. :
Verb The sun wil __ .
Article —. sun will ezplode.
Auxiliary The sun __ ezplode.

Figure 2-11. Distributional frames.

The problem is that these dimensions do not necessarily go together. In
any classification system, it is critical to separate distinctions being made on
the basis of function from those being made on the basis of form. For example,
how should we classify the word laughing? Laugh is a verb, which fits into
frames such as They will . Laughing is its progressive form which fits into
verb frames such as They had been . However, laughing also fits into the
frame [saw a . cow, which is associated with adjectives like purple, and the
frame The _ lasted for days and days, which fits nouns like merriment.

Looking at the form of laughing and the way it is derived, we should classify
it as a verb. Looking at the way it functions in sentences, we would sometimes
call it a verb, sometimes a noun, and sometimes an adjective. A word like flash
is both a verb and a noun and represents the same event in both cases. Many
classes (particularly in languages like English, with weak inflectional systems)
do not take suffixes and prefixes that can be systematically used to classify
them. Informally, we can say that the same word is used in different classes,
depending on its specific form and context. We run into problems when we try
to characterize this formally in a way that could be used to provide detailed

rules for syntax.

Categories based on distribution. Structural linguists felt that the best
criteria for classifying linguistic entities (including words) were distributional
tests, since these could be objectively applied to samples of a language. Figure
911 illustrates a distributional definition for noun, verb, article, and auxiliary,
based on finding distinct frames in which they can appear.

There are many problems with the simple idea of distribution. In a real
language sample, we are very unlikely to see the word string I saw a recognition
or Colorless green ideas sleep furiously. Does this mean that the words are of
the wrong classes, or simply that they do not have appropriate meanings? In
fact, as we try to make more precise distinctions, we find that very few words
have really identical distribution patterns (see the exercises). It is possible to
come up with distributional criteria if we are dealing with a computer program
that accepts a carefully limited subset of English, but if we attempt to apply
the technique to the language as a whole, we bog down in the details.

2.2 WORD CLASSES 51

Categories based on meaning. It is possible instead to adopt a catego-
rization based on meaning. This approach has been proposed primarily for
use in computer systems that do not try to analyze the structure of sentences
fully. In Chapter 7 we will describe some of these systems, including a program
for machine translation designed by Wilks, in which the word classes include
categories such as: SUBSTANTIVE-ELEMENT, ENTITY, POTENT-ELEMENT
(those that can designate actors), and MARK-ELEMENT (those that can desig-
nate items that themselves designate, like thoughts and writings). Some prac-
tically oriented computer systems carry this to an extreme, letting the classes of
objects they discuss (such as AIRLINE-NAME, AIRPORT-NAME, and PERSON-
NAME) serve directly as the word classes. Such systems are said to use a
semantic grammar.

In many classification systems, it is eonvenient to introduce a notion of
subcategorization in order to account for the fact that all members of one class
can automatically be members of another. Every human is also animate. Every
animate object is a physical object, and so on. This kind of categorization
has been applied both in computer models and in more traditional approaches
within the structural and generative paradigms. In Section 6.3 we will discuss
the issues of subcategorization further as it applies to both words and structures.

The problem with a meaning-based approach is that semantic word classes
are not sufficient for analyzing syntactic structures, since meaning categories
correspond so poorly to the determination of which words appear in which
structures. A person can go to town or return to town, and it is clear that
the verbs go and return are in the same overall meaning class. It is normal
English to say We were waiting for your return, but not We were waiting for
your go. The fact that return but not go is also a noun cannot be determined
from meaning criteria.

Whatever criteria we use for classification, we will find that some word
classes are closed—they contain a fixed set of members, and additions are
extremely rare—while other classes are open, and there are mechanisms for
generating new members as new concepts need to be expressed. In English, the
class containing the words and, or, and nor is a closed class with fewer than a
dozen members while nouns, verbs, adjectives, and adverbs are open classes. We
can invent new names for objects, actions, and properties either by producing
totally new words or by adding endings to words from other classes. The noun
computer came from the verb compute, and in turn is the basis for the verb
computerize, which can be further adapted to form an adjective computerizable.
This process is discussed further in Section B.4.

Traditional word class definitions

As pointed out earlier, there is an established set of classes for English, used
in the traditional teaching of grammar, which is not adequate for developing

52 WORD PATTERNS

comprehensive formal accounts of syntax. It nevertheless serves as a basic
vocabulary that most linguists use as a starting point, and it is important to
be familiar with these classes. « '

Most of the categories had their origins in studies of Latin grammar in
the Middle Ages. In fact, for many years preceding the segment of linguistic
history presented in Chapter 1, the study of language in Europe was dominated
by analogies with Latin. It is now accepted as obvious by linguists that the
categories applying to one language cannot be applied directly to a different
language, even one that is related or is a derivative. However, there appear
to be some fundamental similarities among the structures of all languages, for
instance the presence of categories corresponding roughly to our notions of noun
and verb.

There are a number of fascinating questions about the form of a universal
grammar that would capture these similarities and shed light on the underlying
mental structures on which words and categories are based. It must take
into account the possibility emphasized by Whorf (in Language, Thought, and
Reality) that although our language is shaped by our thinking, our thinking
is also shaped by our language. He pointed out that the basic conceptual
structure of a society may be based on the mechanisms offered by its language
for describing objects and events. Unfortunately, such issues are far beyond
the scope of what has been explored within the computational paradigm for
language, and they will not be pursued in this book.

The following description of English categories makes use of phrases that
might appear in a high school grammar book. These phrases are enclosed
in quotes to indicate that they are to be taken as rough guides, not formal
definitions. This brief summary is intended to provide terminology for the dis-
cussions of syntax in this chapter and in Chapter 3. These chapters do not deal
with the complexities of full English but present some basic mechanisms using
simplified grammars. Section B.4 of Appendix B presents a more systematic set
of categories based on the formalisms described in the rest of the book.

Noun. A noun represents a ‘person, place, thing, or concept.” Nouns can
take endings to represent plural (bug — bugs) and possessive (bug — bug’s).
There is a subclass of nouns called proper nouns, which are names for people,
places, etc. There is another subclass called pronouns, which ‘substitute for
a noun.’ These include personal pronouns (she, he, they, it, we, I you,...),
demonastrative pronouns (this, that, these, those), possessive pronouns (my,
your, her, his, hers,.. .), and relative pronouns (who, which, that,.. .), which
connect subordinate clauses, as in The man who sold Gustav the goldfish.

Verb. A verb ‘signals the performance of an action, the occurrence of an
event, or the presence of a condition.” Verbs take the largest variety of endings
of any English class, including present participle (-ing), past tense (-ed) and
past participle (-en). Many verbs have irregular forms instead of the standard
endings, for example, ring, rang, rung; break, broke, broken. Thereis a subclass

2.2 WORD CLASSES 53

qf auziliary verbs (will, can, has, is,...) which precede a main verb in a phrase
like He must have been planning it all along. A subclass of the auxiliaries is the
moda'ls (can, may, must, should,...). There are 2 number of verbal forms that
fun.ctlon as nouns and adjectives. These include the past participle (broken
finished, . .) ?.nd the present participle (running, laughing). When a verb ir;
iptr?ssir;tuzz.rzlc;f:z izl.'m is used as a noun (as in ‘Laughing makes you live longer),

Ad.jective. Adjectives ‘modify nouns or noun equivalents,’ as in a contented
chzld.or the slow running. They can also appear as a complement following
certain verbs, as in She seems gad.

Articl~e (Deter'miner). There is a small closed class of words (the, a, some,
gln,. (tihzs,l; . .)lwhlch precede nouns in standard noun group structures. We will
ivide this class into a number of important. subclasses 1 i i

Y
e ater (as described in

Preposii:ion. Prepositions ‘relate a noun or noun equivalent to the rest of the
sentence.” They are a fairly small closed class (in, on, untd, by, at,...).

Ad.ve‘rb. Adverbs ‘modify other parts of a sentence or the sentence as a whole.’
This is the leftover category—anything that doesn’t have another class get:s
called an adverb.. It includes words that modify adjectives (very, somewhat, . . .)
words that §pec1fy time (usually, now,...), place (here, there, somewhere’. .)7
manner {quickly, easily,...), reasoning (thus, so,...), and a variety of :)th'el,'
stray but useful things (only, not, even,...). They are almost always treated
as a set of special cases, except for the adverbs generated from adjectives b

adding -ly, which specify manner. Y

Conjunctive adverb. One of the adverb classes is used to connect major parts
of sentences. Although some such adverbs (therefore, s0,. . .) may also introduce
a cl‘ause that stands alone, there are others (while, because, unless,...) that are
hml'.r,ed to introducing an embedded clause. These are often ca]le;i subordinate
conjunctions.

Coordinate conjunction. Conjunctions, as their name implies, join things
They are one of the hardest things in the grammar to handle well, and theiI:
treatment is a major issue of syntax. They form a small closed clas,s (and, or
but,...). The conjunctive adverbs can be thought of as a kind of conjunc’tior;
as well as a kind of adverb.

Interjection. When all is said and done, there are a few stray things like oh
hey, ouch, (and many others unprintable) that are interjected into utterances a.;
a way of conveying reactions. This class is rarely handled in computer systems
since people tend not to use them in written language, and current comput,e;
programs are not able to make use of the kinds of meanings they convey.

54 WORD PATTERNS

2.3 Transition networks

This section generalizes the idea of a pattern in a way that brings it much
closer to the intuitive sense that sentences are ‘cut from the same pattern.’ The
concept of phrase structure in Chapter 3 carries this extension a step further.

In describing the structure of sentences such as Fat giraffes cavort and
Wooly bears love sticky honey, we could use two separate patterns: ‘ADJECTIVE
NOUN VERB’ and ‘ADJECTIVE NOUN VERB ADJECTIVE NoOUN.” However,
this misses the fact that they have an initial section in common. It seems
more economical to have some kind of notation (such as brackets) indicating
an optional element and to combine them into a single pattern ‘ADJECTIVE
NOUN VERB {ADJECTIVE NOUN}’ Similarly, we notice that some elements
can be repeated an indefinite number of times. If we want to represent the
structures of bears, wooly bears, ferocious wooly bears, hungry ferocious wooly
bears, etc., it is unsatisfactory to have a set of separate patterns:

Noun
Adjective Noun
Adjective Adjective Noun
Adjective Adjective Adjective Noun

Instead, we want another notation to represent optional repetition (we will use
a “*’) so we can combine them into a single pattern ‘ADJECTIVE* NOUN.’
By convention, the symbol ‘*’ means ‘zero or more repetitions,’ so it covers
the first pattern as well. In addition, we note that in place of a noun with
preceding adjectives we might have a pronoun, as in He loves honey. We can
use the logical symbol for ‘or’ (‘V’) to represent alternatives and parentheses to
indicate grouping, so that for example ‘(A vV B)* means a repeated sequence,
each member of which is either A or B, while ‘A V B*’ is a choice between a single
A and an indefinitely long sequence of B’s. The choice between a noun with
adjectives and a pronoun is expressed as ‘PRONOUN V (ADJECTIVE* NOUN).’
Finally, combining all of these we can express a wide variety of structures in a

single pattern:

(Pronoun V (Adjective* Noun)) Verb {(Pronoun Vv {Adjective* Noun))}

This kind of algebraic notation has been developed as part of the theory of
formal languages. The specific form introduced here is the regular language for-
malism developed by Kleene. It is quite useful for proving things about lan-
guages and about the kinds of machines that can recognize them. However,
from the point of view of specifying procedures for doing recognition and pars-
ing, this kind of pattern is complex. It is difficult to deal with a pattern that
contains in it symbols like ‘(" and ‘v’ that do not match elements in the word
string themselves but affect the matching of the other symbols.

23 TRANSITION NETWORKS 55

Fortunately, there is a more usable notation that gives us the same power
called state transition diagrams or finite state machines in aufomata theory z;
branch of mathematics that serves as a basis for much of the theory of coin—
putation. We will use transition networks (as these same structures are often
called in computational linguistics) as a way of organizing processes both for
the p{'oduction and the analysis of linguistic structures. The rest of this chapter
describes these networks and explains how they are used. The correspondence
between networks and regular language expressions is covered in textbooks on
automata theory and is explored in some of the exercises.

A transition network consists of a set of states, connected by arcs. Each arc
repr(?sents a transition between two states. In figures, states will be represented
b'y clrf:les and arcs by lines between them, with an arrowhead indicating the
d}rfectlon of the arc. A transition network can be viewed as a pattern for recog-
nizing or generating sequences of words. In both generating and recognizing
the process follows the form of the net in a step-by-step way—each tra.nsitiori
along an are corlfesponds to a single word in the sequence. The pattern is used
by ‘steppu}g through’ the transitions from state to state, following the arrows.
The 'steppmg must begin in an initial state (one marked by a small arrow) and
endina tcjrminal state (indicated by a double circle). Figure 2-12 is an example
f’f a transition network, matching the same set of sentence patterns described
in the long regular expression above. The letters in the circles for the states do
not affect the way the network is used but are there for use in describing it.

The pattern corresponding to fat wooly bears love honey starts in state a
and goes over a series of arcs ‘a ~ADJECTIVE— a ~ADJECTIVE— a -NOUN—
b ~-VERB— ¢ -NOUN— d,” while they gobble it would be ‘e -PRONOUN— b
—V'ER1'3——> f -PRONOUN— d.” Note that two verb arcs are needed, since if there
were simply a pronoun arc connecting states ¢ and d, the network would allow
sequences of adjectives followed by a pronoun.

Adjective Adijective

Figure 2-12. A simple transition network.

