
Language as a Cognitive Process

Volume I: Syntax

Terry Winograd

Stanford University

A
vv

Addison-Wesley Publishing Company
Reading, Massachusetts . Men10 Park, California . London
Amsterdam . Don Mills, Ontario . Sydney

Chapter 2

Word Patterns and
Word Classes

Syntax is the part of linguistics that deals with how the words of a language
are arranged into phrases and sentences and how components (like prefixes and
suffixes) are combined to make words. In theory, it would not be necessary
for languages to have a systematic syntax. We could imagine, for example,
a language that was simply a list of all the things that could be said. The
linguist's work would consist of compiling giant dictionaries of all the possible
phrases with the meaning of each. In fact, there are finite languages for which
such a dictionary exists, such as those of military and diplomatic code books.
Even in ordinary conversation, many of our utterances are copied whole from
a stock of phrases and cliches, including social formulas, such as How do you
do?, and expressions, such as The more the merrier and It takes one to know
one.

Human language taken as a whole, though, is infinite. We can produce sen-
tences that we have never heard or spoken before, and they can be understood
by others for whom they are totally new. At the other extreme from a finite
language we could imagine a completely free language in which any sequence
of words that had a possible interpretation was in the language. The sentence
Language interesting is would be just as reasonable as Language is interesting,
since it would have a clear interpretation. But no human language is syntax-
free. Our freedom to create novel utterances operates within a framework of
grammar, which puts strong constraints on the patterns that are used in the
language.

42 WORD PATTERNS

Describes: a pattern with every element specified

A Kind of: Simple pattern

Bmic Structure: a sequence of words
Predicates:
I I

I An element of a pattern matches a word
if it is equal to the word. , I

(0 (Describes: A pattern including a 'wildcard' that matches anything

A Kind of: Simple pattern

Basic Structure: a sequence, each member of which is either a
word or the character ','

The chozce of ',' is arbitrary. All that matters is that there be a I 1) recognizable iymbol that is allowed to match any word. 1 1 Predicates:
I 1

An element of a pattern matches a word
if it is equal to the word or is the character ',;.

Figure 2-5. Two kinds of simple patterns.

Conditions. The procedure for matching a pattern includes conditions i11-
dicating what is to happen when the sequences run out. One feature of DL that
is different from many programming languages is the ability to separate out spe-
cial conditions like these from the description of the basic method. Whenever
a condition is true of the current state of things, whatever i t says t o do is done,
which may i~ivolve the success or failure of the procedure as a whole. The
details of what can be included in such conditions are given in Section A.4.

Figure 2-5 defines two k i~ ids of patterns, a literal pattern (a sequence to be
matched exactly) and an open pattern of the kind shown for SIR in Figure 2-1.
It fills in more details that were left open by the definition of simple patterns
in Figure 2-4, specifying what the pattern elements are and what i t means for
an element to match a word. Comments appearing in italics are 11ot part of
the formal definition but are included as explanation. With this definition, we
have a fully defined algorithm for searching for a match in a set of literal 01.

open patterns, since all of the objects, steps, and expressioils for which we have
not given definitions are primitive. Note that the predicate 'An element of' a
pattern matches a word' is defined not by giving a test procedure, but by a
logical expression built up ou t of primitive tests for equality and the logical
'or. '

2.1 1 PATTERNS A h D IMATCHI~C 43

2-3

Figure 2-6. Variable pattern

V
A
R
I
A
B
L
E

P
A

:
R
N

Patterns with variables

Describes: a patt,ern whose elements are words and variables

A Kind of: Pattern

Basic Structure: a sequence, each member of which is either a
word or an integer
Integers indicate the variables. If the same integer appears more than
once, it must match the same word i n all occurrences.

Procedures:

Match a variable pattern against a sequence of words

Purpose: Produce a table associating variables with words in
the sequence

Inputs: a pattern and a sequence of words
Working Structures:

Bindings: a table whose keys are integers and whose entries
are words; initially empty

Results: The table of bindings when the match is done
Baaic Method: Step through the pattern and the sequence of

words in parallel doing:
If the pattern element is:

a word, then:
.If it is the same as the corresponding word in the se-

quence go on. Otherwise the match fails.
an integer, then:

.If there is an entry for that ir~Leger in the bindings, then:
=If the word in the sequence is equal to the entry, go

on. Otherwise the match fails.
.If there is no entry. add the word as an entry in the

table with the integer as the key and go on.
Conditions:

If either sequence runs out before the other, the match fails.
If both sequences run out simultaneously then return the

bindings.

The matching procedure of Figure 2-2 applied to simple patterns as defined in
Figure 2-~4 wouid not be very useful for a real language anaiyzer. Olice i t has
finished its work, all we know is whether i t succeeded or failed. There is no
trace left of what words were matched against the pattern elements: or even of
which pattern the whole sequence matched.

In order to perform a task like question answering, the input analyzer must
not only see that the input is a real sentence, but it must also gather information

